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A B S T R A C T   

While characteristics of semi-arid climates place limitations on soil organic carbon (SOC) storage, there is op-
portunity and urgency for increasing the quality and long-term persistence of cropland SOC content within these 
agroecosystems. Livestock re-integration into cropland shows potential to improve semi-arid agroecosystem 
functioning through shifts in biogeochemical processes and the facilitation of multiple ecosystem services 
involved in carbon and nutrient cycling and use-efficiency. Here we review the characteristics of grazing-based 
Integrated Crop-Livestock (ICL) systems and how various associated management practices may interplay with 
semi-arid agroecological and biogeochemical dynamics to influence soil microbial ecology and SOC accumula-
tion and stabilization. We argue that livestock re-integration holds notable potential to increase cropland SOC 
through controls on landscape net primary productivity, allocation of biomass belowground, efficient recycling 
of residual crop nutrients, and soil biological activity related to a suite of soil ecosystem services. Achieving the 
full SOC accumulation potential of ICL management will require site-specific consideration of feedbacks between 
herbivory, soil microbial ecology, soil disturbance, and forage species interactions. Future research should focus 
on optimizing plant-soil-grazer feedbacks and understanding of mechanistic drivers of ICL system outcomes to 
optimize the design and management of semi-arid regional ICL systems for enhanced SOC quality and 
persistence.   

1. Introduction 

Livestock reintegration into cropland has been proposed as a strategy 
to ecologically intensify food, fiber, and fuel production systems and 
reduce the greenhouse gas footprint of industrial agriculture (Garrett 
et al., 2017; Rota and Sperandini, 2009). Integrated crop-livestock (ICL) 
systems are characterized by the utilization of on-site animal services as 
a resource for crop production and/or the use of cropland to support 
livestock production. These ICL systems are in fact foundational com-
ponents to agriculture for over two-thirds of global farmers, contributing 
to about half of the world’s food production (Herrero et al., 2010). 
However, market forces have led to the decoupling of crop and livestock 
production systems in industrialized agroecosystems, resulting in poor 
nutrient cycling within and between agricultural operations and an 
underutilization of ecosystem services provided by such integrated 
systems (Entz et al., 2005; Lemaire et al., 2014). 

ICL practices employ diverse management tools and can be imple-
mented across various scales of cropping systems (Table 1). These 
grazing-based practices provide economic and biological diversification 

of agricultural operations and use on-site animal-derived services to 
offset external inputs (Bell et al., 2014; Garrett et al., 2017) and mini-
mize detrimental impacts of agricultural intensification on soil proper-
ties critical to climate change adaptation (Lemaire et al., 2014; Russelle 
et al., 2007). Growing interest in utilizing cropland to sequester carbon 
may provide new opportunities to recouple crop and animal production 
and help achieve the ambitious climate mitigation targets set at the 
COP21 (UNFCCC, 2015). This is of particular importance in semi-arid 
regions, which contribute substantially to global crop and livestock 
production despite their high vulnerability to the impacts of global 
climate change (Guan et al., 2009). While semi-arid climatic and soil 
characteristics largely determine soil organic carbon (SOC) storage and 
turnover, grazing on cropland nevertheless impacts diverse agro-
ecosystem dynamics such as landscape productivity, biodiversity, the 
adoption of on-farm conservation practices, and trophic interactions 
that are essential considerations for managing SOC (Salton et al., 2014; 
Sanderson et al., 2013). 

This article explores how and to what extent grazing-based ICL 
practices, along with variable co-management components, may i) 
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stimulate soil biological activity, ii) improve essential soil ecosystem 
processes, iii) accumulate additional SOC, and iv) provide co-benefits 
for climate change adaptation within semi-arid production systems. 
Globally, ICL systems remain understudied and, to the best of our 
knowledge, the underlying agroecosystem and soil biological mecha-
nisms have not yet been shown. The body of ICL research is notably 
limited, and system design and agroecological components vary widely 
(Table 1). Thus, the lack of system-level ICL research included in this 
review is acknowledged. Nevertheless, we draw upon research from 
annual and perennial ICL systems – predominately represented by 
grazing of medium or large ruminants on pasture-phase rotations, cover 
crops, and crop residues – as well as rangeland and permanent pature 
systems to develop working hypotheses and better understand how 
edaphic, agroecological, and climatic factors may affect the regional 
potential of semi-arid ICL systems to store SOC and support essential soil 
ecosystem services. The emphasis of this review is less to predict specific 
ICL system outcomes and more to further develop mechanistic under-
standing of how various ICL management components could be utilized 
to maximize SOC persistence in semi-arid cropland. We specifically 
focus on ICL management practices that are instrumental to stimulating 
biological processes and long-term soil carbon sequestration, in order to 
inform the design of ICL systems that effectively support ecological 
intensification and agricultural production goals. 

2. Semi-arid cropland: an underutilized sink for soil carbon 

Semi-arid ecoregions cover ~15% of global land surface (Safriel 
et al., 2005) and climate change projections anticipate both substantial 
expansion of semi-arid global land area and increased dryland 
ecosystem degradation throughout the century (Huang et al., 2016). 
Semi-arid regions are ecological intermediates between desert and 
humid regions, with seasonal and highly variable mean annual precip-
itation that is usually below the regional evapotranspiration potential 
(Bailey, 1979). While gaps remain in understanding the primary drivers 
of SOC dynamics in semi-arid production systems, there is a large rela-
tive influence of environmental variables such as precipitation, tem-
perature, geological parent material, and their compound impact on soil 
morphology and physicochemical characteristics such as soil pH and 
texture (Hoyle et al., 2016; Rabbi et al., 2014). 

Temperature and soil moisture are the most significant factors 
regulating SOC dynamics in semi-arid agroecosystems (Wiesmeier et al., 
2013), with annual precipitation rates very highly correlated to SOC 
storage potentials in non-irrigated landscapes (Liu et al., 2011; Rabbi 
et al., 2014). Both temperature and soil moisture partially shape broad 
ecological features that govern the quantity and quality of organic res-
idue inputs, as well as a suite of microbial community processes related 

to litter decomposition and SOC transformation, stabilization, and 
mineralization (Conant et al., 2011; Thiessen et al., 2013). For example, 
soil moisture and temperature-driven decoupling of C, N, and P cycles 
with increasing aridity (Delgado-Baquerizo et al., 2013) place stoi-
chiometric limitations on SOC formation and stabilization (Cleveland 
and Liptzin, 2007; Schmidt et al., 2011), especially in coarse-textured 
soils (Dlamini et al., 2016; Mcsherry and Ritchie, 2013). A sustained 
decline in soil moisture has been shown to reduce both labile and older, 
recalcitrant SOC fractions (X. Chen et al., 2015). 

Climatic variables influence soil microbial communities and their 
regulation of ecosystem carbon storage and turnover in diverse and 
dynamic ways. For example, prolonged periods of both low and high soil 
water status may restrict microbial mineralization and SOC formation, 
due to poor carbon substrate and O2 diffusion rates, respectively 
(Devêvre and Horwáth, 2000; Zheng et al., 2019). High mean annual 
temperatures are characteristic of many semi-arid ecoregions and are 
associated with expedited rates of enzymatic depolymerization and SOC 
turnover (Bond-Lamberty and Thomson, 2010; Giardina et al., 2014; Qi 
et al., 2016). While higher temperatures may increase microbial carbon 
use-efficiency (CUE) under specific soil microbial community and water 
status interactions, an increase in temperature is more often associated 
with declines in CUE (Conant et al., 2011; Devêvre and Horwáth, 2000; 
Manzoni et al., 2012; Zheng et al., 2019). Whereas high microbial CUE 
promotes microbial growth and SOC stabilization, lower CUE increases 
soil carbon losses with higher respiration and decreased investment in 
microbial biomass production (Manzoni et al., 2012). 

The soil carbon sequestration potential of a given semi-arid cropland 
will ultimately be regulated by the most limiting accumulation factor for 
SOC formation (Hoyle et al., 2016). When precipitation limits biomass 
production, irrigation technologies are implemented to mitigate nega-
tive impacts on plant productivity and crop yield. While this may also 
provide SOC storage benefits (Wiesmeier et al., 2013), prolonged use of 
irrigation is often associated with increased salt deposition onto soil 
surfaces. According to UNEP (2014) estimates, nearly 50% of semi-arid 
irrigated landscapes are experiencing significant impacts of soil salinity. 
In addition to adverse impacts on plant productivity (Munns and Ter-
maat, 1986) and subsequent residue deposition, salt-affected soils also 
tend to have lower microbial CUE (Rietz and Haynes, 2003) and 
enhanced aggregate dispersion (Wong et al., 2010) which can increase 
SOC accessibility to mineralization processes and further exacerbate the 
potential for SOC losses (Setia et al., 2013). 

Land use and associated management practices are large regulators 
of SOC within semi-arid systems (Conant et al., 2017) and designing 
agroecosystems that maximize carbon inputs and minimize manage-
ment induced losses could thus enhance SOC storage (Tautges et al., 
2019). While some semi-arid ICL systems integrate biodiverse perennial 
or high-residue annual forage rotations into cropland, others utilize 
grazing more simply as a termination methodology for crop residues and 
weeds (Garrett et al., 2017). These approaches can result in widely 
different system-level outcomes. The adoption of diversified systems 
with prolonged soil cover, high residue inputs, tightly-coupled C and N 
cycling, and low soil disturbance have been shown to improve soil 
carbon sequestration and the provision of ecosystem services within 
semi-arid irrigated cropland (Bowles et al., 2015; Garcia-Franco et al., 
2018; Plaza-Bonilla et al., 2015; Schmidt et al., 2011). While imple-
mentation varies across agroecosystems, many ICL studies consider 
these components essential elements of successful integrated systems 
(Entz et al., 2005; Herrero et al., 2010; Lemaire et al., 2014; Russelle 
et al., 2007). 

Although semi-arid ecoregions frequently approach climatic 
threshold limits for SOC storage capacity (Hoyle et al., 2013; Huang 
et al., 2016), SOC fluxes out of dry semi-arid soils are often small and 
residence time can be long-lasting when not exacerbated by 
management-induced losses (Booker et al., 2013). Given the extent of 
semi-arid agroecosystems across the globe (Safriel et al., 2005) and their 
significant historical SOC losses, these systems are likely far from soil 

Table 1 
Characterization of predominant integrated crop-livestock systems.  

Key Production 
Services 

Land-based/within farm 
integration 

Examples of ICL system  

• Source of animal 
feed  

• Labor reduction  
• Nutrient 

provision and 
cycling  

• Soil carbon 
deposition  

• Weed 
management  

• Resource 
conservation  

• Erosion control  
• Fire suppression 

Grazing of crop residues  • Cotton stubble with sheep or 
cattle  

• Soy and grain stubble with 
sheep or cattle 

Grazing dual-purpose 
forage crop  

• Early-season grazing of 
alfalfa crop with sheep or 
cattle 

Grazing of cover crops 
within cash-crop rotation  

• Mixed legume-cereal cover 
crop grazing with small and 
large livestock 

Pasture rotation (phase 
farming)  

• Cereal crop and forage 
rotation with sheep or cattle  

• Sod intercropping in corn-soy 
rotation with sheep or cattle 

Grazing of understory 
vegetation in perennial 
cropping systems  

• Vineyards with sheep  
• Fruit and nut orchards with 

small and large livestock  
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carbon saturation (Ahlström et al., 2015) and provide a large opportu-
nity for global atmospheric carbon mitigation through optimizing the 
SOC storage conditions in managed landscapes. While the rate at which 
SOC sequestration in these regions occurs is generally slow, ICL systems 
offer varying management approaches that may be a highly effective 
avenue for largescale carbon storage. This is particularly worthwhile 
when considering residence time and the potential ecosystem services 
and production co-benefits resulting from soil quality improvements in 
semi-arid regions. 

3. Pathways for soil organic carbon accumulation in crop- 
livestock systems 

Grazing alters numerous fundamental landscape dynamics and 
ecological relationships that regulate SOC storage potential. Variation in 
edaphic properties, co-management and their interactions with grazing 
means that SOC can increase, decrease, or remain unchanged under 
diverse grazing practices (Bardgett and Wardle, 2003; Lal, 2002; Orgill 
et al., 2017; Pineiro et al., 2010). However, most studies implementing 
grazing best management practices, across various climates and agro-
ecosystems, have reported SOC accumulation in ICL systems relative to 
non-integrated, less diverse cropping systems (Acosta-Martínez et al., 
2004; Assmann et al., 2014; Boeni et al., 2014; Carvalho et al., 2010; Da 
Silva et al., 2014; Fernández et al., 2011; Fultz et al., 2013b, 2013a; 
Muniz et al., 2011; Souza et al., 2010; Tian et al., 2010; Tracy and 

Zhang, 2008). Some ICL publications have attributed potential SOC 
accumulation to improved rotational complexity, biodiversity, and 
synergistic feedbacks among ICL production components (de Faccio 
Carvalho et al., 2010; Entz et al., 2005; Lemaire et al., 2014; Salton et al., 
2014). 

However, the specific mechanisms influencing SOC stabilization and 
persistence under ICL management remain unclear. This is especially 
true in semi-arid ICL systems, resulting from a lack of grazing-specific 
studies within cropland and large variation in co-management prac-
tices and site-specific agroecological processes. Literature from both 
systems-level studies and management-specific approaches, using ex-
amples from within and outside of semi-arid regions, offer insight into 
potential ICL agroecological and biogeochemical pathways underlying 
SOC control mechanisms. Pineiro et al. (2010) proposed several mech-
anistic pathways that could govern the grazing influence on SOC stor-
age, including shifts in i) forage net primary productivity and carbon 
deposition; ii) N stocks and cycling; and iii) decomposition rates. 
Furthermore, grazing is proposed here to induce alterations in SOC 
through additional shifts in agroecosystem and biogeochemical mech-
anisms of iv) plant community composition and biodiversity; v) forage 
photosynthate allocation and input stoichiometry; and vi) soil physical 
structure (Fig. 1a). 

Fig. 1. Potential agroecological outcomes of ICLS adoption and the underlying soil biogeochemical mechanisms. 
(A) Potential changes in functional ecological and biogeochemical relationships with ICL adoption. Grazing directly influences plant community dynamics and 
organic carbon inputs (green) and indirectly alters root photosynthate allocation and decomposition (red), microbial community functioning (blue), and soil particle 
aggregation and physical structure (yellow) with feedbacks to soil organic carbon (SOC) formation and stabilization. SOC persistence is increased as residues and 
animal excreta are processed through microbial transformations and stabilized through the soil mineral matrix or within soil aggregates. Where grazing may 
decouple carbon from essential nutrients, increasing bioavailability and reactivity, alterations in plant and microbial productivity will influence recoupling of C and 
N. In tandem, these counteracting forces will determine ICL agroecosystem carbon and nutrient use-efficiency. (B) Schematic representation of the agroecological 
implications of livestock integration under best management. Ideal forage species mixtures are biodiverse and include legumes and high-residue C4 perennial grasses. 
Best grazing management utilizes high density, short duration rotational grazing practices at strategic and site-specific forage growth periods. When managed 
properly and in tandem, these practices provide a suite of aboveground agroecological and belowground productivity and SOC accumulation benefits. Letters on 
belowground text boxes reference to influential practices (aboveground). (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 
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3.1. Net primary productivity and carbon deposition 

The accumulation of SOC is a function of the balance between carbon 
deposition – from plant residues, animal excreta, root exudates, and 
external inputs – and microbial decomposition and SOC stabilization 
(Jastrow et al., 2007). Increases in landscape net primary productivity 
(NPP) deposit more organic carbon into the agroecosystem and are 
positively correlated with SOC accruement in semi-arid rangelands and 
croplands (Briske et al., 2011; Hoyle et al., 2013). Increases in soil 
carbon deposition stimulate belowground trophic networks (Hoyle 
et al., 2013; Peterson and Lajtha, 2013) and microbially-regulated 
mineralization processes that can enhance soil C-, N-, P-, and S- 
cycling rates and nutrient availability (Leff et al., 2012). In turn, these 
processes increase plant nutrient uptake (Baligar and Fageria, 2015) and 
positive plant-soil feedbacks on system productivity and SOC accumu-
lation (Flavel and Murphy, 2006; Lal, 2002; Ryals and Silver, 2013; 
Ryals et al., 2015). 

Grazing of cash crop residues, cover crops, and understory biomass 
provide an opportunity to enhance NPP by maintaining longer vegeta-
tion cover and managing for forage quality and composition, especially 
by promoting the use of forage legumes (Garrett et al., 2017; Lemaire 
et al., 2014; Reddy and Reddy, 2016; Rota and Sperandini, 2009). 
Additionally, grazing has been shown to impact NPP (Bardgett and 
Wardle, 2003; Briske and Noy-Meir, 1998) through i) shifting photo-
synthate allocation toward roots (Assmann et al., 2014; W. Chen et al., 
2015; Pineiro et al., 2010); ii) defoliation, removal of senescent tissues 
and greater light availability for actively photosynthesizing vegetation 
(Klumpp et al., 2009; Reeder et al., 2001; Rumpel et al., 2015); iii) 
changes in litter C-to-N ratios (Pineiro et al., 2010) and residue trans-
formation rates (Breland and Eltun, 1999; W. Chen et al., 2015; Shariff 
et al., 1994); and iv) shifts in plant and soil microbial community 
structure and biomass (Bardgett and Wardle, 2003; Hanke et al., 2014). 
While livestock integration into cropland will export a small percentage 
of C and nutrients, in the form of livestock gains and respiration (Sulc 
and Franzluebbers, 2014), precision management may increase nutrient 
turnover rates and bioavailability (de Faccio Carvalho et al., 2010) to 
the extent that subsequent crop yields have been shown to be main-
tained or increased (Bell et al., 2014; Peterson et al., 2020). 

Whereas increases in NPP are essential for improving SOC, there is a 
diminishing soil carbon sequestration benefit of increasing NPP beyond 
a site-specific threshold. A 20-year trial that artificially doubled plant 
residue inputs within unmanaged systems found that bulk SOC storage 
did not significantly increase, especially in more protected and stable 
SOC pools with slower turnover periods (Lajtha et al., 2014). This may 
partially be explained by a priming effect, where the decomposition of 
older SOC is stimulated by low concentrations of microbially-accessible 
N, or excessive N mineralization from recently deposited low C-to-N 
litter causing increased microbial competition for substrate (Kuzyakov, 
2002; Qiao et al., 2016; Zatta et al., 2014). The introduction of grazing 
may increase priming, as defoliation triggers root senescence and quick 
bursts of belowground N-rich residue deposition (Bardgett and Wardle, 
2003). Adversely, where best grazing practices promote the prolifera-
tion of living roots, exudates and other rhizodeposits may contribute 
more to long-term SOC storage through preferential and efficient utili-
zation by soil microbes (Sokol et al., 2019). While the stimulation of NPP 
and maintenance of residue inputs within semi-arid ICL systems are 
important for SOC regulation, further increases in SOC storage will 
further depend on short- and long-term variability in aboveground and 
belowground diversity, residue quality and input stoichiometry, and 
spatial distribution (Peterson and Lajtha, 2013; Qiao et al., 2016). 

3.2. Forage composition and biodiversity 

A growing body of literature has observed a positive relationship 
between plant composition richness and soil carbon sequestration (Cong 
et al., 2014; De Deyn et al., 2008; Fornara and Tilman, 2008; Lambers 

et al., 2004; Lange et al., 2015; Steinbeiss et al., 2008). This benefit is 
associated with improvements in NPP, exudate release rate and di-
versity, and microbial functioning (Cardinale et al., 2012; Dijkstra et al., 
2006; Lange et al., 2015; Steinbeiss et al., 2008), which result from shifts 
in trophic interactions and resource use and allocation among multiple 
species (Fornara and Tilman, 2008; Hooper et al., 2005). For instance, 
increased plant species richness has been shown to increase root archi-
tectural diversity and belowground biomass production, altering the 
spatial and temporal deposition of belowground carbon inputs (Cong 
et al., 2014; DuPont et al., 2014; Lange et al., 2015) and promoting the 
formation of soil micropores that may partially determine the storage 
capacity of C inputs (Kravchenko et al., 2019). More diverse plant as-
semblies have also been shown to enhance soil pathogen suppression, 
which may partially drive diversity-productivity relationships (Maron 
et al., 2011). 

The introduction of grazing alters forage biodiversity and quality 
through ecological selection pressures, with resulting shifts in plant 
functional niche relationships and biogeochemical cycling (Hanke et al., 
2014; Rumpel et al., 2015; Rutherford and Powrie, 2013; Stahlheber and 
D’Antonio, 2013). Heavily stocked and continuously grazed systems 
tend to reduce plant species richness (Pavlů et al., 2006; Rutherford and 
Powrie, 2013) and might shift vegetation compositions toward annual 
and exotic forbs and grasses (Díaz et al., 2007; Stahlheber and D’Anto-
nio, 2013; Waters et al., 2017). However, this does not necessarily 
translate to reductions in vegetation cover or biomass accumulation 
(Stahlheber and D’Antonio, 2013). Precision grazing practices, such as 
rotational grazing with managed exclusion periods, are common under 
ICL (de Faccio Carvalho et al., 2010) and have been shown to conserve 
or improve plant diversity within semi-arid landscapes (Bakoglu et al., 
2009; Pineiro et al., 2010), especially under conditions of low precipi-
tation (Abdalla et al., 2018). 

Variation in grazing intensity and periodicity also exert unique se-
lective pressures over specific plant functional groups (Hart, 2001; 
Reeder et al., 2001; Reeder et al., 2004). The plant species composition 
and biodiversity of grazed lands may be controlled with proper grazing 
management (Sanderson et al., 2005; Stahlheber and D’Antonio, 2013). 
For example, persistence of annual species may be lowered by late 
season heavy grazing through direct hindrance of seed production 
(Briske and Noy-Meir, 1998), whereas perennial species tend to decrease 
in continuously grazed systems, as maturing buds are removed and tiller 
replacement is constrained (Briske and Noy-Meir, 1998; Gutman et al., 
2002). Once established, perennial and C4-dominated grasslands appear 
more resilient to grazer-induced disturbances than annual and 
C3-dominated grasslands, in terms of maintaining biodiversity (Hanke 
et al., 2014;Reeder et al., 2001), annual biomass production (Gutman 
et al., 2002; Zatta et al., 2014; Zheng et al., 2011), and SOC accumu-
lation (Abdalla et al., 2018; Beniston et al., 2014). 

3.3. Decomposition, nutrient cycling and stoichiometry 

Reports throughout different pedoclimatic conditions outline the 
significance of the nitrogen cycle in regulating SOC formation and 
turnover processes (Oren et al., 2001; J. Six et al., 2002; Van Groenigen 
et al., 2006). The stability of these SOC pools, and resulting soil carbon 
storage potential, not only depends on the cycling of nutrients during 
formation and turnover processes, but the consistency and narrow range 
of C, N, P, and S ratios as well (Cleveland and Liptzin, 2007; Hessen 
et al., 2004; Kirkby et al., 2013, 2011; Schmidt et al., 2011). Con-
sumption of plant biomass by grazers significantly alters stoichiometric 
relationships in agroecosystems (Elser and Urabe, 1999; Metcalfe et al., 
2014), profoundly impacting N and P cycling mechanisms by i) removal, 
transformation, return, and redistribution of N and P through urine and 
dung deposition (Parsons et al., 2013; Pineiro et al., 2010; Rumpel et al., 
2015); ii) decoupling of C with N and P through animal metabolic 
processes (Parsons et al., 2013; Soussana and Lemaire, 2014); iii) 
modification of NPP, forage root activity, and C input quality (Gao et al., 
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2008; Hamilton et al., 2008; Hamilton and Frank, 2001; Klumpp et al., 
2009; Rumpel et al., 2015); and iv) changes in compaction and aeration 
of top soil from hoof action (Beukes and Cowling, 2003) that differen-
tially alter denitrification and soil respiration rates (Sexstone et al., 
1985). Understanding the impacts of livestock integration on agro-
ecosystem nutrient dynamics is therefore necessary to manage ICL sys-
tems for greater SOC accumulation. 

High intensity grazing in grasslands has been shown to increase soil 
C-to-N ratios, as N is exported by animal biomass and expedited litter 
decomposition rates alter soil C and N mineralization (Hassink, 1994; 
Klumpp et al., 2009; Tracy and Zhang, 2008). This increase in soil C-to-N 
may decrease microbial CUE (Manzoni et al., 2012), thereby decreasing 
the relative allocation of soil C toward microbial growth (Kallenbach 
et al., 2016) and therefore SOC storage. Additionally, spatially hetero-
geneous build-ups of reactive soil N, from patches of urine and dung 
deposition (Afzal and Adams, 1992), can accelerate the initial stages of 
microbial litter decomposition (Berg, 2000; Berg and Meentemeyer, 
2002). This build-up of reactive soil N may also increase the potential for 
N losses through leaching, denitrification, and volatilization of NH3 
(Núñez et al., 2007; Pineiro et al., 2010). Alternatively, there may be 
significant agroecosystem N removal upon grazing (Parsons et al., 2013) 
and potential N limitation for SOC stabilization. Where this occurs, N 
fertility management is likely to mitigate constraints within ICL systems 
(Janssen, 2006; Zhu and Chen, 2002). Removal of residual inorganic N 
with the introduction of ICL management may actually help to improve 
N use-efficiency and environmental outcomes relative to continuous 
cropping (Janssen, 2006; Snyder et al., 2009). This is achieved when ICL 
best management practices promote forage root biomass production and 
greater net ecosystem N uptake (Pineiro et al., 2009). 

A majority of consumed biomass is returned to the soil as dung and 
urine, where carbon and nutrients are stoichiometrically decoupled and 
present in more labile and bioavailable forms (Eldridge et al., 2017; 
Rumpel et al., 2015). As stocking rates increase, nutrient decoupling by 
animals can outpace the C, N, and P coupling gained through greater 
NPP (Lemaire et al., 2014). However, significant increases in microbial 
biomass and enzymatic activity under ICL management (Acosta-Martí-
nez et al., 2010, 2004; da Silva et al., 2015; Franzluebbers and Stuede-
mann, 2008; Muniz et al., 2011; Salton et al., 2014) may facilitate a 
recoupling and balancing of stoichiometric relationships (Drinkwater 
and Snapp, 2007; Rumpel et al., 2015). This stoichiometric balancing of 
C, N, and P is not only important for determining SOC ordination, 
quality and stability of freshly deposited carbon, but also for the 
mineralization of older, stable SOC stocks (Schmidt et al., 2011). The 
stoichiometric relationships of plant-grazer-soil interactions are medi-
ated by species-specific herbivore metabolic processes and body size 
managed according to plant community composition and productivity. 
Whereas herbivore metabolic processes might exacerbate stoichiometric 
decoupling, other characteristics of ICL systems, such as enhanced 
agroecosystem NPP and microbial activity, can help recouple soil C with 
N and P and provide new avenues to prevent reactive soil N build-up and 
losses. 

3.4. Soil physical structure and SOC occlusion 

Physical protection of SOC, through intra-aggregate occlusion and 
mineral sorption, promotes stabilization longevity of SOC through 
reduced access to microbial mineralization and oxidation (Brodowski 
et al., 2006; Dungait et al., 2012; Kaiser and Guggenberger, 2000; 
Schmidt et al., 2011; J. Six et al., 2002). The strength of mineral sorption 
is related to the collective surface area and bonding properties of the 
mineral phase and the lability and aromaticity of SOC compounds (J. Six 
et al., 2002). While conventional understanding suggested that recalci-
trant, lignin-derived, and aromatic organic C inputs contribute more to 
mineral-associated organic carbon (MOC), a protected and persistent 
pool of soil C (Kaiser and Guggenberger, 2000; Lavallee et al., 2020; 
Smith et al., 1997), recent research emphasizes the contributions of 

labile and non-structural compounds toward MOC stabilization (Cotrufo 
et al., 2015; Kallenbach et al., 2016). Ruminant conversion of plant 
structural components, such as lignin, cellulose, and hemi-cellulose 
(Jung and Allen, 1995), into more labile carbon compounds (Rumpel 
et al., 2015) may therefore enhance MOC accumulation (Cotrufo et al., 
2015; Kallenbach et al., 2016) under ICL. There may be a positive 
feedback between MOC stabilization and soil aggregate formation, 
where physically occluded intra-aggregate SOC is composed predomi-
nantly of MOC, and is further protected from microbial degradation 
(Bongiovanni and Lobartini, 2006; Kallenbach et al., 2016, 2015; Lav-
allee et al., 2020). 

While the existing literature is scarce, multiple ICL studies have 
shown improvements in aggregate stabilization (Acosta-Martínez et al., 
2004; Fultz et al., 2013b; Maughan et al., 2009; Salton et al., 2014) and 
occluded intra-aggregate SOC (Boeni et al., 2014; Fultz et al., 2013b; 
Salton et al., 2014) relative to continuous cropping. However, other 
studies have found no increase in intra-aggregate SOC from ICL adoption 
(Assmann et al., 2014; Franzluebbers and Stuedemann, 2008). Souza 
et al. (2010) monitored three grazing intensities under integrated 
no-tillage soybean/pasture rotations and found that light and moderate 
grazing intensities substantially improved macroaggregate (4.67–9.52 
mm) formation, while having a non-significant impact on micro-
aggregates (<1 mm). They hypothesized that animal integration stim-
ulated pasture root biomass and exudate release, resulting in higher soil 
particle aggregation and modest increases in total SOC content – 
corroborating recent findings on the relative contributions of living 
roots and rhizodeposits to SOC accumulation (Kallenbach et al., 2016; 
Sokol et al., 2019). Fultz et al. (2013a) observed significant relative 
increases in recalcitrant, intra-aggregate SOC pools within semi-arid ICL 
systems, further highlighting the potential soil carbon sequestration 
benefit with improved aggregate size and stability. 

Aggregate formation is enhanced by biological activity, due to the 
particle binding dynamics of microbially-derived decomposition prod-
ucts (Chotte, 2005; Kallenbach et al., 2015) and the physical effects of 
roots and fungal hyphae (Rillig and Mummey, 2006; Tisdall et al., 
1997). In addition to an increase in total microbial biomass and activity, 
ICL management may promote a shift toward more fungal dominated 
populations (Acosta-Martínez et al., 2010; Davinic et al., 2013). Im-
provements in particle aggregation and SOC physical protection under 
ICL management are also attributed to increases in organic inputs, re-
ductions in mechanization, and increases in root growth due to forage 
integration into previously continuously cropped land (Acosta-Martínez 
et al., 2004; Salton et al., 2014; Souza et al., 2010). The introduction of 
livestock to cropland does provide concern over soil compaction and 
associated decreases in water and air conductivity (Hamza and Ander-
son, 2005). Whereas some field studies (Lobry De Bruyn and Kingston, 
1997) and modeling approaches (Kaine and Tozer, 2005) have shown 
reduced soil porosity and infiltration with increased livestock trampling, 
other studies have found no effects of increasing stocking rates on soil 
physical condition (Monaghan et al., 2005). Some studies suggest that 
higher earthworm abundances – that result from higher stocking den-
sities and subsequent manure deposition – could partially counter the 
compaction impacts from trampling (Curry et al., 2008; Schon et al., 
2008). While compaction has been observed in ICL systems with cattle 
integration (Tracy and Zhang, 2008), the extent of compaction is dras-
tically reduced when animal traffic occurs during dry and thawed soil 
conditions, as compared to wet and frozen periods (Bell et al., 2011; 
Drewry et al., 2004). Additionally, increases in compaction under ICL 
management are generally isolated to shallow soil depths, may be 
ameliorated through root growth and conservative tillage (Bell et al., 
2011; Tracy and Zhang, 2008), and do not appear to decrease subse-
quent crop yields (Bell et al., 2011; Rakkar et al., 2017; Tracy and Zhang, 
2008). Although it remains unclear to what extent ICL displacement of 
mechanization, such as tillage, weed cultivation, and mowing, will 
contribute to improvements in subsurface soil compaction (Soane et al., 
1982), the degree to which ICL itself contributes to soil compaction 
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largely depends on grazing management and co-management practices. 

4. Managing integrated crop-livestock systems for soil organic 
carbon sequestration 

Based on the fundamental understanding described above, there are 
various opportunities that exist to optimize ICL systems for enhanced 
SOC accumulation including management of i) grazer stocking intensity, 
frequency, and duration; ii) vegetation composition and coverage; and 
iii) soil disturbance levels (Fig. 1b). While the potential impacts of ICL 
adoption on SOC storage remain inconclusive, much of the literature 
underscores the value of controlled grazing management and some of 
the co-management conservation practices frequently implemented 
within ICL systems (Da Silva et al., 2014; Ryschawy et al., 2017; Salton 
et al., 2014). 

4.1. Stocking intensity and rotational grazing 

Grazing intensity is a function of grazer density and duration and is 
one of the main management drivers of SOC accumulation or decline 
within grazed ecosystems (Holechek et al., 1995; Zhou et al., 2017). The 
response of plant communities and SOC to grazing is highly context 
specific and dependent on interacting agroecological, edaphic, and cli-
matic conditions (Mcsherry and Ritchie, 2013; Pineiro et al., 2010; 
Stahlheber and D’Antonio, 2013). However, the magnitude of these 
impacts will largely be determined by management with respect to the 
timing (periodicity and frequency) and intensity with which livestock 
are grazed. ICL systems may utilize either continuous grazing, where 
livestock graze for extended periods of time with no or infrequent rest 
periods, or rotational grazing where livestock are rotated frequently 
amongst smaller sections, allowing for longer vegetation rest periods. 
When compared to grazing exclusion, some studies have found a posi-
tive relationship between stocking density and SOC accumulation under 
both continuous and rotational grazing regimens (Conant et al., 2003; 
Derner et al., 2006; Dubeux et al., 2006; Manley et al., 1995; Reeder 
et al., 2004; Schuman et al., 2002). However, there is a site-specific 
threshold at which stocking rates become inversely associated with 
SOC storage (W. Chen et al., 2015; Da Silva et al., 2014; Dlamini et al., 
2016; Ernst and Siri-Prieto, 2009; Mcsherry and Ritchie, 2013; Plaza--
Bonilla et al., 2015; Teague et al., 2011), especially for labile SOC 
fractions (Cao et al., 2013; Silveira et al., 2013). For instance, grasslands 
dominated by C3 and mixed C3–C4 species are more sensitive to SOC 
losses at higher grazing pressures (Frank et al., 1995; Mcsherry and 
Ritchie, 2013) than those dominated by C4 grasses. 

Under continuous grazing, lower intensity may help maximize the 
potential SOC accumulation provided by animal integration while 
minimizing the detrimental impacts of heavier grazing intensities. High 
intensity, continuous duration grazing practices have been shown to 
reduce vegetation biodiversity (Teague et al., 2011; Waters et al., 2017) 
and landscape productivity (W. Chen et al., 2015; Plaza-Bonilla et al., 
2015; Schönbach et al., 2011), while light or moderate intensity grazing 
can maintain or improve biodiversity and aboveground biomass pro-
ductivity compared to grazing exclusion (Cui et al., 2005). Heavy 
stocking rates may enhance litter decomposition and turnover rates 
through (i) shifts in forage population toward fast-growing species with 
low lignin and high N content (Rumpel et al., 2015); (ii) return of carbon 
in more labile forms as dung and urine (Rumpel et al., 2015); and (iii) 
physical breakdown and incorporation of residues with animal traffic 
(Schuman et al., 2002, 1999). However, belowground productivity and 
carbon deposition appears to benefit from light to moderate grazing, 
relative to high intensity or grazing exclusion (W. Chen et al., 2015; 
Zhou et al., 2017). A meta-analysis by Zhou et al. (2017) found that, 
while heavy and moderate intensity grazing decreased SOC pools, light 
intensity grazing significantly increased microbial biomass and total 
SOC compared to grazing exclusion. The importance of grazing intensity 
management is even more pronounced in arid and semi-arid ecoregions, 

where sustained high intensity grazing may result in rapid SOC decline 
(Dlamini et al., 2016). 

Depending on the type of ICL system, rotational grazing may be 
essential to maintain or improve SOC (Fig. 1b). Within semi-arid agro-
ecosystems the adoption of rotational grazing practices, which incor-
porate periods of rest between short and intensively stocked grazing 
periods, have been observed to increase SOC (Briske et al., 2011; Conant 
et al., 2003; Teague et al., 2011; Waters et al., 2017) and maintain 
topsoil (Mcsherry and Ritchie, 2013; Sanjari et al., 2008; Teague et al., 
2015) relative to continuous grazing. Though some experimental results 
are mixed (Briske et al., 2008). Intensive rotational grazing can result in 
reduced animal selectivity and more uniform and homogenous grazing 
(Dumont et al., 2007; Leigh and Holgate, 1978; Teague and Dowhower, 
2003). When grazing periodicity best management practices are uti-
lized, this can result in a shift toward more beneficial pasture compo-
sition for SOC accumulation (W. Chen et al., 2015; Teague et al., 2011; 
Waters et al., 2017), with higher perennial grass content (Kemp et al., 
2000) and soil coverage (Earl and Jones, 1996; Teague et al., 2011). 
Longer periods of rest can also enhance vegetation recovery (Sanderman 
et al., 2015), improve aboveground (Briske et al., 2011; Teague et al., 
2011) and belowground productivity (W. Chen et al., 2015), enhance 
nutrient retention (W. Chen et al., 2015; Conant et al., 2003; Teague 
et al., 2011; Waters et al., 2017), and reduce soil erosion potential 
(Kemp et al., 2000; Sanjari et al., 2008). 

4.2. Forage species selection 

Forage species may be chosen to provide annual or short term-cover, 
such as through cover cropping, or as part of longer perennial under-
story or pasture-phase rotations. The adoption of pasture-phase rota-
tions have shown strong evidence to maintain or improve cropland SOC 
(Conant et al., 2017; Franzluebbers et al., 2014; Glover et al., 2010; 
Jarecki and Lal, 2003; Salton et al., 2014), especially under conservation 
tillage management (Da Silva et al., 2014; De Souza et al., 2008; Gamble 
et al., 2014). Pasture-phase rotations are also more efficient than crop 
phases at recycling and retaining residual crop nutrients (Lemaire et al., 
2014; Rumpel et al., 2015; Russelle et al., 2007), providing direct ben-
efits for subsequent crop yields (Maughan et al., 2009; Tracy and Zhang, 
2008). Choice of forage species for pasture or cover cropping is an 
important consideration when implementing ICL systems (Fig. 1b), as 
specific plant functional groups have been shown to strongly mediate 
SOC storage potentials (Lange et al., 2015; Oelmann et al., 2007; 
Steinbeiss et al., 2008; Temperton et al., 2007; Wu et al., 2017). 

Pasture-phase rotations are often dominated by cool or warm-season 
perennial grasses, sometimes incorporating leguminous N-fixing species 
(Bell et al., 2014; Bell and Moore, 2012; Russelle et al., 2007). Perennial 
grasses have more extensive root development and prolonged soil cover 
compared to annual pastures or cropland (Beniston et al., 2014; Glover 
et al., 2010; Schipanski and Drinkwater, 2012). Studies have consis-
tently shown that root-deposited C has a longer residence time than 
aboveground-derived carbon (Mazzilli et al., 2015; Rasse et al., 2005), 
potentially due to increased physico-chemical protection and sorption 
interactions during decomposition (Rasse et al., 2005). Additionally, 
increased biological activity from fine root development and rhizo-
sphere exudation also promote microaggregate formation and subse-
quent enhancement of SOC physical occlusion within the soil matrix 
(Jastrow et al., 2007, 1998; Johan Six et al., 2002). Perennial pastures 
have also been shown to (i) mitigate soil carbon loss from erosion 
(Robertson et al., 2009; Russelle et al., 2007; Schipanski and Drink-
water, 2012); (ii) improve water holding capacity and use-efficiency 
(Bell et al., 2014; Tracy and Zhang, 2008); (iii) and increase microbial 
biomass and activity (Acosta-Martínez et al., 2010, 2004; Beniston et al., 
2014; DuPont et al., 2014) relative to annual-dominated pastures and 
continuous cropland, potentially providing positive feedbacks for SOC 
accumulation. 

While plant community composition strongly affects SOC storage 
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processes, the influence of specific plant functional groups within more 
complex and diverse communities remains poorly understood. Intro-
ducing legumes may partially mediate belowground productivity and 
turnover as well as a suite of biogeochemical functions that benefit SOC 
storage. Semi-arid grassland communities containing legumes show in-
creases in plant functional complementarity and facilitation that reduce 
competition for soil N (Wu et al., 2017), increase leaf N uptake (Tem-
perton et al., 2007), and enhance P bioavailability (Drinkwater and 
Snapp, 2007). Drinkwater et al. (1998) found that even when legumi-
nous mixtures did not increase aboveground biomass production, these 
systems still resulted in higher accumulation of new SOC compared to 
non-leguminous mixtures. However, other studies have found that pre-
dominately leguminous plant mixtures negatively affect SOC storage 
(Lange et al., 2015). This may be due to reduced root biomass produc-
tion and rhizosphere activity (Bessler et al., 2009; Lange et al., 2015) or 
decreasing C-to-N ratios accelerating the decomposition of resident SOC 
(Kuzyakov, 2002; Qiao et al., 2016). 

Different forage legumes do not perform equally to grazing distur-
bances (Kleen et al., 2011; Schwinning and Parsons, 1996) and species 
selection is therefore an important best management practice consid-
eration. Annual re-planting of red or white clovers may provide an 
optimal outcome, due to their preferential selection by grazers (Dumont 
et al., 2007) and positive performance under grazing pressure with 
respect to total forage productivity (Sanderson et al., 2005) and protein 
content (Kleen et al., 2011). The pairing of grass species, especially C4 
grasses, with legumes appear to maximize ecosystem functional niche 
complementarity and SOC accumulation benefits, especially compared 
to monocultures (Fornara and Tilman, 2008). This is likely achieved 
through increased access and provision of N by legumes and greater N 
uptake and use-efficiency by C4 grasses, in both high and low diversity 
plant communities (Fornara and Tilman, 2008). In addition, landscapes 
dominated by C4 and perennial grasses show greater adaptation to 
heavier stocking rates. Their higher root-to-shoot ratios and subsequent 
increases in belowground carbon deposition have been shown to 
sequester additional SOC with grazing (Dubeux et al., 2006; Mcsherry 
and Ritchie, 2013; Orgill et al., 2017; Waters et al., 2017). 

4.3. Tillage disturbance and residue retention 

The interaction of grazing traffic and h and adaptationeavy tillage 
co-management is likely to reduce the SOC accumulation potential of 
semi-arid ICL systems (de Faccio Carvalho et al., 2010; Franzluebbers 
and Stuedemann, 2008; Siri-Prieto et al., 2007; Sulc and Franzluebbers, 
2014), especially at shallow soil depths (Acosta-Martínez et al., 2004; 
Fultz et al., 2013b). However, the use of controlled grazing and the 
introduction of forage plants can assist in noxious weed suppression and 
residue management (Schoofs and Entz, 2000; Schuster et al., 2016; 
Sean Clark and Gage, 1996; Tracy and Davis, 2009), potentially 
reducing the use of mechanical disturbance and better facilitating a 
transition to conservation tillage management within semi-arid crop-
land (Smith et al., 2015). 

A decrease in mechanical cultivation abates the turnover of macro- 
and microaggregates that facilitate the physical occlusion and protec-
tion of SOC, thereby reducing the exposure of older, stable SOC to mi-
crobial decomposition (Mikha and Rice, 2004; Six et al., 2000). This is 
particularly critical for semi-arid ICL systems where increases in 
occluded intra-aggregate SOC are proposed to be a significant part of the 
SOC accumulation benefit. In addition to increasing SOC storage po-
tential, conservation tillage practices can increase microbial biomass 
(Acosta-Martínez et al., 2004; Angers et al., 1993; Franzluebbers et al., 
1995) and activity (Acosta-Martínez et al., 2010; Deng and Tabatabai, 
1997) and promote the proliferation of soil fungi (Frey et al., 1999) 
which have shown to be critical for stable SOC formation (Kallenbach 
et al., 2016; Liang et al., 2019). A 13-year study comparing the relative 
outcomes of different semi-arid annual cropping systems found 22% 
more SOC in the 0–15 cm depth fraction under no-till (NT) ICL 

management than conventional tillage (CT) continuous cropping, with 
significantly more SOC within occluded intra-aggregate pools (Fultz 
et al., 2013a). A study by Carvalho et al. (2010) also observed signifi-
cantly higher SOC accumulation in multiple depth fractions down to 25 
cm under NT ICL management relative to both CT ICL and continuous 
cropping systems. Larger amounts of retained surface residues under NT 
also help reduce soil surface exposure, thereby improving soil water 
conservation and soil temperature regulation (Lal and Kimble, 1997; 
Ramakrishna et al., 2006) and reducing soil erosion potential (Lal and 
Kimble, 1997; Plaza-Bonilla et al., 2015). 

5. Ecosystem services and co-benefits 

The overwhelming thrust of agronomic research and technological 
development over the last half century has focused on improving the 
productivity and sustainability outcomes of agricultural systems that are 
increasingly specialized in crop or livestock production. Nevertheless, a 
growing body of literature suggests that reintegrating livestock at the 
farm-scale can provide economic and environmental benefits while 
reducing risks associated with manure nutrients and market and 
weather variability (Garrett et al., 2017). In the face of increasing 
resource scarcities, climate change, and societal demands for a broad set 
of sustainability outcomes, ICL systems offer the potential to advance 
agriculture toward several key sustainability goals that are essential for 
climate change resilience, including: (i) improved net landscape carbon 
sequestration; (ii) increased growth of total agricultural productivity per 
unit of land; (iii) significant gains in N and P nutrient use-efficiency; (iv) 
improved erosion control; and (iv) reduced vulnerability to crop and 
livestock losses associated with environmental stresses. For instance, 
pasture-phase rotations in annual cropping system and prolonged 
maintenance of understory vegetation in perennial cropping systems 
enhance landscape NPP, reduce erosion and surface runoff, and increase 
nutrient recycling efficiency through deep and fibrous forage rooting 
that reintroduce leached nutrients back into the crop rooting zone. This 
further reduces groundwater contamination and external input 
requirements. 

When managed properly, the introduction of forages and grazing 
have also been shown to suppress weed pressure, mitigating the use of 
mechanical and chemical pest control methods. Additionally, multiple 
ICL studies have observed the maintenance or improvement of subse-
quent crop yields following the introduction of grazing and pasture- 
phase integration (Maughan et al., 2009; Peterson et al., 2020; Tracy 
and Zhang, 2008). Improvements in soil structure increase infiltration 
rates and facilitate groundwater recharge while prolonging the period 
before initiation of seasonal irrigation requirements, with significant 
benefit for semi-arid producers. However, more ICL-specific research 
must be conducted to quantify the co-outcomes – including potential 
improvements in soil health, decreases in chemical inputs and labor, and 
potential tradeoffs such as compaction, stoichiometric nutrient decou-
pling and the build-up of reactive soil N. 

6. Conclusion and knowledge gaps 

With a diversity of applications and management options, ICL sys-
tems have significant global adoption opportunity and climate change 
mitigation and adaptation potential. Livestock re-integration may 
impact cropland SOC dynamics through modifying (i) above- and 
belowground biomass production; (ii) recycling of residual crop nutri-
ents; (iii) biological activity and trophic networks complexity; (iv) soil 
structure and SOC physical protection; (v) accumulation of labile SOC 
fractions; and (vi) impacts on noxious weed cycles and subsequent use of 
mechanical cultivation (Lemaire et al., 2014; Salton et al., 2014; Vilela 
et al., 2011). The direction and magnitude of these impacts will largely 
be determined by climate and soils as well as interactions with other 
agroecosystem management components including plant species 
composition and cover, crop rotations, fertilization regimens, and soil 
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disturbance. 
Maximizing SOC accumulation potential under ICL management will 

require consideration of the important feedback between herbivory, soil 
microbial ecology, and forage species interactions (Fig. 1a). While 
various findings of this overview were drawn from isolated management 
approaches, and may contradict or be altered over time, the existing 
body of research strongly supports the use of no-till management to 
capitalize on other potential SOC accumulation mechanisms of semi- 
arid ICL systems. Research also supports the utilization of C4 and 
perennial or high-residue annual forages, legumes, and light to moder-
ate intensity rotational grazing practices for building SOC within semi- 
arid cropland (Fig. 1b). Managing for enhanced biodiversity and 
tighter nutrient control will also assist in capitalizing on proposed SOC 
benefits of ICL. 

However, specific knowledge gaps remain in optimizing plant-soil- 
grazer feedback and co-management practices to improve SOC quality 
and quantity. While much of the literature highlights potential changes 
in total SOC stoichiometry and quantity under ICL management, it is still 
unclear to what extent simply increasing SOC content provides short, 
medium, and long-term benefits. The accumulation of SOC may be 
central to realizing the climate change mitigation potential of agricul-
ture, especially in semi-arid ecoregions where SOC storage potentials are 
rarely achieved (Ahlström et al., 2015) and often limit improvements in 
soil health and agroecosystem resilience to climate change. However, 
the utilization of SOC for its nutrients and energy to conduct microbial 
functions is an essential consideration. In this case, the quality of SOC 
may be much more important than the total quantity sequestered, and 
long-term persistence and stabilization of SOC, especially to mineral 
surfaces, may come as a trade-off for microbial accessibility. 

As discussed, the integration of ruminant grazing into cropland may 
alter many SOC transformation pathways, and further research should 
focus on better understanding the mechanistic drivers of these out-
comes, especially relating to semi-arid SOC quality, turnover, and sta-
bilization dynamics. Additionally, the breadth of ICL research must 
expand across diverse climatic, edaphic, and agroecological conditions 
while placing a stronger emphasis on the biogeochemical outcomes of 
systems-level analyses. The extent to which specific ICL system prac-
tices, or combinations of management decisions, provide SOC benefits 
still remains unclear, and more long-term research is necessary to 
develop a comprehensive and interdisciplinary understanding of how 
these specific agroecological systems may benefit producers, the envi-
ronment, and society at large. 
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Machado, P.L.O., Cobucci, T., de Souza França, A.F., 2011. Atributos biológicos do 
solo em pastagens de diferentes idades no sistema de integração lavoura-pecuária. 
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grazing on forage quality, quantity and animal performance. Agriculture, Ecosystems 
& Environment 113, 349–355. https://doi.org/10.1016/j.agee.2005.10.010. 

Peterson, C.A., Deiss, L., Gaudin, A.C.M., 2020. Commercial integrated crop-livestock 
systems achieve comparable crop yields to specialized production systems: a meta- 
analysis. PloS One 15. https://doi.org/10.1371/journal.pone.0231840. 

Peterson, F.S., Lajtha, K.J., 2013. Linking aboveground net primary productivity to soil 
carbon and dissolved organic carbon in complex terrain. Journal of Geophysical 
Research: Biogeosciences 118, 1225–1236. https://doi.org/10.1002/jgrg.20097. 
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